Calculus Cheat Sheet

Limits
Definitions
Precise Definition : We say zllL’na f(z) = Liffor Limit at Infinity : We saygcliﬁmoO f(x) = L if we can
every ¢ > 0 there is a § > 0 such that whenever make f(z) as close to L as we want by taking «
0<|z—a|l<dthen|f(z)—L| <e. large enough and positive.
“Working” Definition : We say Jana f(zx)=Lif There is a similar definition for w_lir_noo flz)=1L
we can make f(x) as close to L as we want by except we require x large and negative.
taking z sufficiently close to a (on either side of a)
without letting z = a. Infinite Limit : We say J@af(x) = oo if we can
make f(x) arbitrarily large (and positive) by taking =
Right hand limit : lim_f(z) = L. This has the sufficiently close to a (on either side of ) without

same definition as the limit except it requires = > a. letting x = a.

Left hand limit : lim f(z) = L. This has the same There is a similar definition for IiLn f(z) = -0
T—a~ r—a
definition as the limit except it requires z < a. except we make f(x) arbitrarily large and negative.

Relationship between the limit and one-sided limits
lim f(z) =L = Ilim f(z)= lim f(z)=1L lim f(z)= lim f(z)=L = lim f(zx)=1L
rz—at T—a~ rz—at T—a~ T—a

r—a

Iim+ f(x)# lim f(z) = IiLn f(z)Does Not Exist

Properties

Assume lim f(z) and lim g(x) both exist and ¢ is any number then,
T—a T—a

1.0 I 4. 1im L) 27 ided li
limef(@)] = m 7(2) Jm | 28] = 2o provided fim g(2) 0
r—a
2. lim [f(x) £ g(x)] = lim f(x) £ lim g(x) 5. lim [f(x)]" = | im f(a)]
3. Jim [f(x)g()] = lim f(z) lim g() 6. Jim [ ¢/7(@)| = y/lim f(z)
Basic Limit Evaluations at +co
1. Im e =00 & lim e*=0 5. neven: Ilim z" =
T—00 r—— 00 T—+ o0
2. lim In(z) =c0 & lim In(z) = —o0 6.nodd: lm z"=0co & lim a"=—oco
T—r00 r—0+
b 7.neven: lim aa™+---4+bx+c=sgn(a)oo
3. Ifr>0then lim — =0 wrE o0
e 8.nodd: lim ax™+---+bx+ c=sgn(a)oc
4. If r > 0 and z" is real for negative « e
then lim %:0 9.n0dd:mﬂrpooax +---+cr+d=—sgn(a)co

T—— 00 I

Note : sgn(a) =1ifa > 0and sgn(a) = —1ifa <O0.
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Evaluation Techniques

Continuous Functions

If f(z)is continuous at a then I[>n f(z) = f(a)

Continuous Functions and Composition
f(z) is continuous at b and IiLn g(x) = b then
x a

lim £ (g(a)) = f (Jim g(2)) = f ()

Factor and Cancel

x4 —12 . (z—2)(z+6)
im ———— = lm ———————~=
r—2 x2 — 21 T—2 LE({E — 2)
—im 208y
=2 X 2

Rationalize Numerator/Denominator

. 3=z 3—Vx 3+ x
lim =i
z—9 12 — 81 x—9 2 — 81 3+\/5
. 9—=x . —1
v=9 (22 = 81)(3+ V&) 229 (z+9)3+ Va)
-1 1
- (18)(6) 108

Combine Rational Expressions

im L (L L) D L (2@t h)
h0h \z+h x) hro0h\ z(x+h)

—h . -1 1
— ) =lm—-—=——
x(x + h) h—0 x(x + h) 2

L’Hospital’s/L’Hoépital’s Rule
fl) 0 fl@) _*oo

I lim @ ~ 0 0 am ) T Too MM

/
lim f(@) = lim ! (33), a is a number, oo or —co
z—=a g a:) T—a g’(g:)

Polynomials at Infinity

p(x) and ¢(x) are polynomials. To compute

lim p(z) factor largest power of z in ¢(x) out of
z—E o0 ¢(x)

both p(z) and ¢(x) then compute limit.
32 —4 22 (3- %)

z—llrIIoo 5x — 222 - w—llr—noo 2 (é — 2)
x
3-% 3
= lim = a2 _ _ 2
2 2

r—+—o00 2 —
T

Piecewise Function
if v < —2

. 2245
lim g(z) where g(z) = { ifr> 9

r——2 1—-3z
Compute two one sided limits,

lim g(x)= lim 22+5=9
r——2" r——2"

lim = lim 1-3x2=7
r——2+ g(x) r——21 v

One sided limits are different so Iim2g(:r) doesn’t
T—>—

exist. If the two one sided limits had been equal
then Iing(x) would have existed and had the
r——

same value.

Some Continuous Functions

Partial list of continuous functions and the values of x for which they are continuous.

1. Polynomials for all z.

2. Rational function, except for z’s that give
division by zero.

3. /z (n odd) for all z.
4. {/x (neven)forall x > 0.

5. e for all z.

6. In(z) for z > 0.

7. cos(x) and sin(z) for all z.

8. tan(z) and sec(z) provided
™ 7w 3T

.11775 7_77_575777'“
9. cot(z) and csc(z) provided
rF#E -, 27, —m, 0,7, 27,

Intermediate Value Theorem

Suppose that f(z) is continuous on [a, b] and let M be any number between f(a) and f(b). Then there exists

a number ¢ such that a < ¢ < band f(c) = M.
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Derivatives
Definition and Notation

If y = f(z) then the derivative is defined to be f'(x) = lim M

h—0 h
If y = f(x) then all of the following are equivalent If y = f(«) all of the following are equivalent
notations for the derivative. notations for derivative evaluated at z = a.
af dy d df dy
! frd [ _— = — = — = / = ! = — = — =
Fla)=y =0 =L = (f(a) = Df (@) F@=vloa= gg| =gy =DI@

Interpretation of the Derivative
If y = f(z) then,

1. m = f’(a) is the slope of the tangent line 2. f'(a) is the instantaneous rate of change of
to y = f(z) at x = a and the equation of f(z) atx = a.

the tangent line at = = a is given by 3. If f(t) is the position of an object at time ¢ then

y = fla) + fi(a)(z — a). f'(a) is the velocity of the object at t = a.

Basic Properties and Formulas

If f(x) and g(z) are differentiable functions (the derivative exists), c and n are any real numbers,

12 (e) =0 4 (F@) £9() = ) £ 0'(a)

2. (c f(ac))/ —cf'(x) 5. (f(x)g(;v))/ — f'(2) g(z) + f(z) ¢'(z) — Product Rule

3. %(ﬂ) —nz"' —PowerRule ¢ (;“g))) _ f’(x)g(zcg)(;)])ff) () _ quotient Rule

7 % (f (g(m))) =f (g(m)) ¢'(z) — Chain Rule
Common Derivatives

% (x) =1 d%(csc(x)) = — csc(z) cot(x) % (a‘”) =a”In(a)
%(sin(x)) = cos(z) %(cot(x)) = —csc?(x) % (ex) = e”
%(cos(m)>: —sin(z) %(sm_l(a:)): \/11_7 %(In(x)): %, x>0
%(tan(:p))—se&(x) %(cos‘l(x)):— 11_x2 %(In |x|): %, z#0
%(sec(x)) = sec(z) tan(x) % (tanfl(x)) == +1x2 % ( Ioga(m)) == Inl(a)’ x>0

© Paul Dawkins - https://tutorial.math.lamar.edu


https://tutorial.math.lamar.edu

Calculus Cheat Sheet

Chain Rule Variants

The chain rule applied to some specific functions.

1 ([f@]") =[] 1w 5. - (cos [7(a)] ) = - (@) sin [ )]

2. ddx<ef($)> = f'(z)el® 6. ddx(tan [f(:v)D = f'(x)sec? {f(x)}

3. ;i(m [f(a:)D = J;f/((;:)) 7. % (sec [f(x)D = f'(z)sec {f(x)} tan [f(x)}
4, % (sin [f(g;)D = () cos {f(x)} 8. % (tan1 [f(x)D D)

Higher Order Derivatives
The nt" Derivative is denoted as

d'fL
and is defined as F™(z) = !

dzm

The 274 Derivative is denoted as

2
(@) = [P () = % and is defined as
!
f0) () = (f““”(:c)) , i.e. the derivative of the

!/
f(x) = (f’(x)) , i.e. the derivative of the first
(n — 1)t derivative, f*=1(z).

derivative, f'(z).

Implicit Differentiation

Find ¢/ if 2279 4 2392 = sin(y) + 112. Remember y = y(z) here, so products/quotients of = and y will use
the product/quotient rule and derivatives of y will use the chain rule. The “trick” is to differentiate as normal
and every time you differentiate a y you tack on a 4’ (from the chain rule). Then solve for 3.

e =% (2 — 9y') + 322y + 223y y' = cos(y)y’ + 11
11 — 22279 — 3322

2229y _ 0y/@22=9Y 1 34292 + 20391 = cos "+11 = y =
y + 322y% + 223y y )y + Y7 2u3y — 9e2-% _ cos(y)

(2$3y _ 9e2:1;—9y _ COS(y)) y/ =11 = 2e21‘—9y _ 3x2y2

Increasing/Decreasing — Concave Up/Concave Down

Critical Points Concave Up/Concave Down

x = cis a critical point of f(x) provided either

1. f'(e)=0or,
2. f’(c) doesn't exist.

Increasing/Decreasing
1. If f/(x) > 0 for all z in an interval I then
f(zx) is increasing on the interval I.
2. If f'(z) < 0for all z in an interval I then
f(zx) is decreasing on the interval I.

3. If f/(x) = 0 for all z in an interval I then
f(z) is constant on the interval I.

1. If f”(x) > 0for all z in an interval I then
f(z) is concave up on the interval I.

2. If f"(x) < 0forall z in an interval I then
f(x) is concave down on the interval I.

Inflection Points
x = cis a inflection point of f(z) if the
concavity changes at x = c.
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Extrema
Absolute Extrema Relative (local) Extrema
1. 2 = ¢ is an absolute maximum of f(x) if 1. z = cis a relative (or local) maximum of f(x)
f(e) > f(z) for all z in the domain. if f(c) > f(z) for all = near c.
2. x = cis an absolute minimum of f(z) if 2. x = cis a relative (or local) minimum of f(x)
f(e) < f(z) for all z in the domain. if f(c) < f(z) for all  near c.
Fermat’s Theorem 1%t Derivative Test
If f(z) has a relative (or local) extrema at « = ¢, If z = cis a critical point of f(z) thenxz =cis
then = = cis a critical point of f(z). 1. a relative maximum of f(z) if f/(x) > 0 to the

— 4 1 —
Extreme Value Theorem left of + = cand f'(x) < 0 to the right of z = c.

If f(x) is continuous on the closed interval [a, b] then 2. arelative minimum of f(z) if f'(x) < 0 to the

there exist numbers ¢ and d so that, left of x = cand f’(x) > 0 to the right of z = ¢.
1.a<ecd<b, 3. not a relative extrema of f(z) if f/(x is the
2. f(c) is the absolute maximum in [a, b], same sign on both sides of x = c.

3. f(d) is the absolute minimum in [a, b]. ond Derivative Test

Finding Absolute Extrema If z = cis a critical point of f(x) such that f'(c) =0
To find the absolute extrema of the continuous thenz = ¢

function f(x) on the interval [a, b] use the following 1. is a relative maximum of f(z) if f”(c) < 0.
process. 2. is a relative minimum of f(x) if f”(c) > 0.

1. Find all critical points of f(z) in [a, b]. 3. may be a relative maximum, relative

2. Evaluate f(z) at all points found in Step 1. minimum, or neither if f(c) = 0.
3. Evaluate f(a) and f(b).

Finding Relative Extrema and/or
4. ldentify the absolute maximum (largest g

Classify Critical Points

function value) and the absolute minimum 1. Find all critical points of £().

(smallest function value) from the o
2. Use the 1%t derivative test or the

evaluations in Steps 2 & 3. L . .
2nd derivative test on each critical point.

Mean Value Theorem

If f(x) is continuous on the closed interval [a, b] and differentiable on the open interval (a, b) then there is a

number a < ¢ < b such that f'(c) = w.

Newton’s Method

f(zn)
f'(zn)

If 2,, is the n'" guess for the root/solution of f(z) = 0 then (n + 1)*! guess is z,11 = =, — provided

f'(x,) exists.
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Related Rates

Sketch picture and identify known/unknown quantities. Write down equation relating quantities and differ-
entiate with respect to ¢ using implicit differentiation (i.e. add on a derivative every time you differentiate a

function of ¢). Plug in known quantities and solve for the unknown quantity.

Example A 15 foot ladder is resting against a
wall. The bottom is initially 10 ft away and is being
pushed towards the wall at i ft/sec. How fast is the
top moving after 12 sec?

¥
? 151t
g x

-—x =l
x' is negative because x is decreasing. Using
Pythagorean Theorem and differentiating,
2 +y2=152 = 222 +2yy =0
After 12 sec we have z = 10 — 12 (1) = 7 and so

y = /152 — 72 = V/176. Plug in and solve for /.

1 7
7= ) +V176 ¢y =0 = ¢ = ——— ft/sec
< 4) Y WY

Example Two people are 50 ft apart when one
starts walking north. The angle 0 changes at

0.01 rad/min. At what rate is the distance between
them changing when 0 = 0.5 rad?

T Moving Person

X

50 ft &g

Stationary Person
We have ¢’ = 0.01 rad/min. and want to find z’. We

can use various trig functions but easiest is,
/

- T
sec(f) = i sec(f)tan(d) ¢ 20
We know 6 = 0.5 so plug in ¢’ and solve.

!/
sec(0.5) tan(0.5) (0.01) = 5%

2’ = 0.3112 ft/min
Remember to have calculator in radians!

Optimization

Sketch picture if needed, write down equation to be optimized and constraint. Solve constraint for one of
the two variables and plug into first equation. Find critical points of equation in range of variables and verify

that they are min/max as needed.

Example We're enclosing a rectangular field with
500 ft of fence material and one side of the field is a
building. Determine dimensions that will maximize

the enclosed area.
Building

Y

X

Maximize A = xy subject to constraint z+ 2y = 500.
Solve constraint for = and plug into area.

A = y(500 — 2y)
= 500y — 2>
Differentiate and find critical point(s).
A'=500—-4y= y=125
By 2" derivative test this is a relative maximum and
so is the answer we’re after. Finally, find x.
x =500 — 2(125) = 250
The dimensions are then 250 x 125.

z =500 -2y

Example Determine point(s) on y = x2 + 1 that are
closest to (0, 2).

Minimize f = d*> = (z — 0)2 + (y — 2)? and the

constraint is y = 22 + 1. Solve constraint for 2% and

plug into the function.

P=y—1= f=2+(y—2)*
=y—1+@y—-22=y*-3y+3

Differentiate and find critical point(s).

ff=2y-3 = y=3

By the 2"¢ derivative test this is a relative minimum

and so all we need to do is find z value(s).

— 4+ 1
a:-:l:\/5

The 2 points are then (%, %) and (f%, g)

P?=3_-1=1 =
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Integrals
Definitions

Definite Integral : Suppose f(z) is continuous on  Anti-Derivative : An anti-derivative of f(x) is a
[a, b]. Divide [a, b] into n subintervals of width A = function, F(z), such that F'(z) = f(x).

and choose z} from each interval. Then
Indefinite Integral : /f(x) dx = F(x)+ c where

b n
/a fla)de = nllnoo ; f (i) Aw. F(z) is an anti-derivative of f(x).

Fundamental Theorem of Calculus

Part | : If f(z) is continuous on [a, b] then Variants of Part | :
g(x) = /a f(t) dt is also continuous on [a, b] and %/a f(t)dt = u'(z) f[u(z)]
d [* b
Iy — & — d
/@ =7 [ 10 =, i [ sa = v

Partll : f(x) is continuous on [a,b], F(z) is an g @

anti-derivative of f(z), ie. F(z) = /f(a:) dz,then  dz [, F#ydt = (z) f [u(z)] — ' (2) f [v(2)]

b
/ F(@)dz = F(b) — Fla).

Properties
/f(a:) 4 o) da = /f(x) dxi/g(x) da /cf(ac) du = c/f(a:) dz, ¢ is a constant
/ab fl@) £g(x)dx = /ab flz)dz £ /abg(x) dz /abcf(x) dzx = c/ab f(x)dz, cis a constant
/:f(x)dzzo /abcdx:c(b—a),cisaconstant

/abf@:)dx:—/baf(x)d:c /abf@:)dw </ab

b c b
/ f(z) d;v:/ f(z) d:c+/ f(z) dx for any value c.

f(x)‘dx

b b
If f(z) > g(z) onagmgbthen/ f(a:)dacZ/ g(z)dx
b
Iff(:c)z()onagxgbthen/ f(z)dx >0

b
Ifmgf(a?)SMonangbthenm(b—a)g/ f(z)de < M(b—a)
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Common Integrals

/kdx:karc /x"dxzix"HJrc,nyéfl /xildx:/ldlenmqtc
n+1 z
1 1
/e“du=e“+c / dx = —Injax + b| + ¢ /In(u)du:uln(u)—1L—|—c
ax+b a
/cos(u) du = sin(u) 4+ ¢ /sec(u) tan(u) du = sec(u) + ¢ /tan(u) du = In|sec(u)| + ¢
= —cos(u) + ¢ /csc(u) cot(u)du = —csc(u) + ¢ /tan(u) du = —In|cos(u)| + ¢

In|sec(u) + tan(u)| + ¢ a? + u?

f st
/sec ) du = tan(u) + ¢ J sec(u)du = /;du = étan‘1 (g) +c
/

csc?(u) du = — cot(u) + ¢ J €sC(u)du

In|csc ) + cot(u)| + ¢ /V 7 —u?

Standard Integration Techniques

. 1 (U
du = sin (7) +c
a

b b g(b)
u Substitution : / f(g(x)) ¢'(z) dz will convert the integral into/ flg(x) ¢'(z) dx = / f(w) du using
a a g(a)
the substitution u = g(x) where du = ¢’(x)dz. For indefinite integrals drop the limits of integration.

2 2 8
Example/ 527 cos (z%) dzx / 527 cos (2%) dz = / gcos(u) du
1 1 J1
1 5sintul - 2 (s .
u=1> = du=3r’dr = 2’dx= gdu = 3si n(u) 1 g(SIn(S) - SIh(l))
r=1 = u=13=1 = =2 = u=2=38

Products and (some) Quotients of Trig Functions

For [ sin™(z) cos™(z) dz we have the following : For [tan"(z)sec™(x) dz we have the following :
1. n odd. Strip 1 sine out and convert rest to 1. n odd. Strip 1 tangent and 1 secant out and
cosines using sin”(z) = 1 — cos?(z), then use convert the rest to secants using
the substitution u = cos(z). tan?(z) = sec?(z) — 1, then use the
2. m odd. Strip 1 cosine out and convert rest to substitution u = sec(x).
sines using cos?(z) = 1 — sin®*(z), then use 2. m even. Strip 2 secants out and convert rest
the substitution « = sin(z). to tangents using sec?(z) = 1 + tan?(z), then
3. n and m both odd. Use either 1. or 2. use the substitution v = tan(z).
4. n and m both even. Use double angle 3. n odd and m even. Use either 1. or 2.
and/or half angle formulas to reduce the 4. n even and m odd. Each integral will be
integral into a form that can be integrated. dealt with differently.

Trig Formulas : sin(2z) = 2sin(xz) cos(z), cos?(z) = 3(1 + cos(2z)), sin®(z) = 1(1 — cos(2z))

Example /tan3(x) sec®(z) dx Example CSC')ZS((?) dx
/tan3x sec5:cdx:/tan2x sec’ z tanz secz dz / S gy — /% dx /% dx
= / (sec?(z) — 1) sec*(z) tan(z) sec(z)dx _ / - cozoégzz Sine) 7., [u _ COS(x)}
= / (u® — 1) u'du [u = sec(gc)} _ _/ (1—1;2)2du _ _/ 120 g
= 1 sec’(z) — §sec’(x) +c = 1 sec?(z) + 2In|cos(z)| — 1 cos®(z) + ¢
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b b
—/ v du. Choose u and dv from integral
a

b
Integration by Parts : /udv = uv —/vdu and / udv = uv
and compute du by differentiating « and compute vausing v=[dv.

5
Example /xe_m dx Example / In(z) dzx
—z —x 3
u=z dv=e"* = du=dx v=-—e u=1In(z) dv=dx = du:%dx v=2x
—x _ —x —x 5 5 5 5
re Tdr = —xe +/e dz
/ In(z)dx = zlIn(x)| — / dx = (zln(z) — x)
=-—ze ¥ —e "+c 3 3 I8 3
= 5In(5) — 3In(3) — 2

Trig Substitutions : If the integral contains the following root use the given substitution and formula to

convert into an integral involving trig functions.

Va2 =bz? = x=¢sin(d) | VP2 -a? = z= bsec \/a2+b2x2 = x=¢tand
cos?(f) = 1 — sin*(6) tan?(0) = sec?(0 sec?(d) = 1 4 tan*(9)
16 12
Exam Ie/idx / cos 6 dﬂz/ide
P 22\/4 — 922 2 sin (9)(2 cos ) ¢ ) sin®(6)
=2sin(f) = dxr= 2cos(9)dd
3 sin(®) v = 5 cos(f) :/12csc2(9)d9: —12cot(h) + ¢
.2
V4 —92%=1/4 — 4sin”(#) = \/4cos?() =2 |cos(f)|  yse Right Triangle Trig to go back to z’s. From
Recall V22 = |z|. Because we have an indefinite substitution we have sin() = 3£ so,
integral we’'ll assume positive and drop absolute
value bars. If we had a definite integral we’d need to 3x
compute 6’s and remove absolute value bars based
on that and, 4 -G
2] { r fz>0 From this we see that cot() = ¥4=9%%. So,
LR 6 WI=07
——dr = —————+¢
In this case we have \/4 — 922 = 2 cos(6). 224/4 — 972 x

Partial Fractions : If integrating a rational expression involving polynomials, f P(“" dz, where the degree of

P(z) is smaller than the degree of Q(z). Factor denominator as completely as pOSSIb|e and find the partial
fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). For
each factor in the denominator we get term(s) in the decomposition according to the following table.

Factor of Q(z) Termin P.F.D H Factor is Q(x) Term in P.F.D
A Ay A Ay
b b)k ek
art ar +b (a2 +b) ax+b+(ax—|—b)2+ +(a:r—|—b)’c
Ar + B Air + By Apx + By,
2 b 2 b k . -~ "
s hrte ax? +bxr+c (a2” + bz +c) ar? +bxr+c (az? + bx + c)F
72?4 13z 7o’ +132 _A_ 4 BatC _ A@+4)+4(Br+0) (z—1)
Example / (z—1) (22 + 4) x (z— 1)J(rx2+4) -1 3:214 = (z—1) (z2+4)
722 + 132 p 4 3z + 16 p Set numerators equal and collect like terms.
/(m—l)(x2+4) xi/x—1+x2+4 ‘ 722+ 13z = (A+ B)2? 4+ (C - B)z +4A-C
_ / 4 + 3z + 16 de Set coefficients equal to get a system and solve to
r—1 2>+4 2?44 get constants.
=4In|z — 1|+ 3In(2* +4) + 8tan~" (%) A+B=7 C-B=13 4A-C=0
Here is partial fraction form and recombined. A=4 B=3 C =16
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Applications of Integrals

b
Net Area : / f(z) dz represents the net area between f(z) and N x
the z-axis wi’?h area above z-axis positive and area below z-axis negative. ‘ \/

Area Between Curves : The general formulas for the two main cases for each are,
b d

y=f(z) = A= / [upper function] — [lower function] dz & x = f(y) = A= [right function] — [left function] dy

If the curves intersect then the area of each portion must be found individuallcy. Here are some sketches of
a couple possible situations and formulas for a couple of possible cases.

y  y=7{x) ¥ o y=7ix)

) P E \/é; x

Y=g ‘
b d c
A= / (@) —gla)de | A= / ) —g(y)dy | A= / f(2) - ga) de + / o) — f(z) da

c

Volumes of Revolution : The two main formulas are V = [ A(z)dz and V = [ A(y)dy. Here is some
general information about each method of computing and some examples.

Rings Cylinders/Shells
A= w((outer radius)? — (inner radius)Q) A = 2n(radius)(width / height)

Limits: x/y of right/bot ring to z/y of left/top ring Limits : z/y of inner cyl. to z/y of outer cyl.
Horz. Axis use f(z), Vert. Axis use f(y), || Horz. Axisuse f(y),  Vert. Axis use f(z),
g(z), A(z) and dz. 9(y), A(y) and dy. 9(y), A(y) and dy. g(x), A(z) and dz.

Ex. Axis: y=a>0 Ex. Axis: y=a <0 Ex. Axis:y=a>0 Ex. Axis: y=a <0
¥ h h X
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outer radius : a — f(x) || outerradius: |a| + g(z) radius : a — y radius : |a| +y
inner radius : a — g(z) || inner radius: |a| + f(z) width : f(y) — g(v) width : f(y) — g(v)

These are only a few cases for horizontal axis of rotation. If the axis of rotation is the z-axisusethey = a < 0
case with a = 0. For vertical axis of rotation (x = a > 0 and = = a < 0) interchange x and y to get appropri-
ate formulas.

Work : If a force of F'(x) moves an object in Average Function Value : The average value of

b . 1 b
aﬁxﬁb,theworkdoneiSW:/ F(x)dx f(a:)onagxgblsfavg:m/ f(x)dx
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Calculus Cheat Sheet

Arc Length & Surface Area : The three basic formulas are,

b b b
L= / ds SA= / 27y ds (rotate about z-axis) SA = / 2mx ds (rotate about y-axis)

where ds is dependent upon the form of the function being worked with as follows.

dy dz\? dy 2
ds 1+<dz> do ify = f(z), a<z<b ds—\/(dt> +<dt> dt ifz = f(t),y=g(t), a<t<b

dr\?
do ifr=f(0), a<0<b

dx\?
ds 1+<dy> dy ifz=f(y),a<y<b ds r +<d0

With surface area you may have to substitute in for the x or y depending on your choice of ds to match the
differential in the ds. With parametric and polar you will always need to substitute.

Improper Integral

An improper integral is an integral with one or more infinite limits and/or discontinuous integrands. Integral
is called convergent if the limit exists and has a finite value and divergent if the limit doesn’t exist or has
infinite value.

Infinite Limit
o0 t b b
1. /a f(z)dx :tll[gc/a f(z)dx 2. /_OO f(z)dx :t_lgmoo/t f(z)dx
3. / flx)de = / f(z)dx +/ f(x) dz provided both integrals are convergent.
Discontinuous Integrand
b b b
1. Discontinuity ata : / flx)de = Iim+/ f(x)dx 2. Discontinuity atb: / f(x)dx = I|m / f(z
a t—a t a
b c b
3. Discontinuity ata < ¢ < b: / flx)de = / f(z)dx +/ f(x) dz provided both are convergent.
Comparison Test for Improper Integrals : If f(z) > g(z) > 0 0on [a, ) then,

If/ f(x) dz is convergent then / g(z) dx is convergent (if larger converges so does the smaller).

2. If/ x) dz is divergent then/ f(z) dx is divergent (if smaller diverges so does the larger).

oo

1
Useful fact : If a > 0 then / — dz converges if p > 1 and diverges for p < 1.
X

a
Approximating Definite Integrals

% and divide [a, 0]

For given integral / f(z) dz and n (must be even for Simpson’s Rule) define Az = b

into n subintervals [zg, z1], [z1, 22], ..., [¥n—1,Z,] With 2y = a and z,, = b then,

b
Midpoint Rule : / f(z)dz =~ Az [f(:rj) + f(z3) + -+ f(z))|, =F is midpoint [x;_1, ;]

b
Trapezoid Rule : / fz)dz ~ i [f(;vo) +2f(z1) +2f(z2) + -+ 2f(xp—1) + f(a:n)]

2

b
Simpson’s Rule : / f(z)dx ~ i [f(xo) +4f(z1)+2f(x2) +- -+ 2f(wp—2) +4f(xp-1) + f(a:n)]

3
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Common Derivatives and Integrals

Derivatives

Basic Properties/Formulas/Rules

% (cf(2)) = ef'(x), cis any constant % (F@) £ 9@) = /@) £ ¢'(@)
% (x") =nz""!, nis any number. % (c) = 0, c is any constant.

( f(x)g(a;)) = f'(2) g(z) + f(2) ¢'(z) — Product Rule % (e7)) = ¢/ (x)e?®

() P o] £

% [f (g(m))] =f (g(fv)) ¢'(z) — Chain Rule

Common Derivatives

Polynomials
FO=0 gem )= Gl)ew ()

Trig Functions

% [sin(x)} — cos(z) % [cos(x)} — —sin(x) % [tan(x)} — sec?(z)
2 eso(a)] = —cso(w)cotla) - [sec(r)] = sec(r)tan(x) - [cot(x)] = —csc’(a)
Inverse Trig Functions

ploel= s pletw]= s plerw] =

o @] = ey s 0] = o et @] =

Exponential & Logarithm Functions

% [afc} =a”In(a) % [ex} =e’

%[ln(x)} :%, 2> 0 %[In\:ﬂ]:%, 240 %[loga(x)} :xlnl(a), 2> 0
Hyperbolic Functions

% [sinh(m)} = cosh(z) % [cosh(x)} = sinh(z) % [tanh(:c)} = sech?(x)

% [eseh(z)] = — cseh(z) coth(z) % [sech(z)] = —sech(z) tanh(z) d% [coth(z)] = — cseh?(x)
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Common Derivatives and Integrals

Integrals

Basic Properties/Formulas/Rules

/cf(m)dx:c/f(a:) dz, c is a constant. /f(x)ig(:r)dx:/f(x)dxi/g(a:) dx
[ 1o = s|
/cf dx—c/f ) dz, c is a constant. /f ) £g(x dx—/f dmi/b()dx
|t [ = [ wyas

/a f(m)dar—/acf(m)dx—i—/cbf(a:)dx /abcdx—c(b—a),cisaconstant.

b
Iff(a:)ZOOnagxgbthen/ f(z)dx >0

= F(b) — F(a) where F(x /f

b b
If f(x) > g(x) Ona<:r<bthen/ f(:n)dx>/ g(x) dx

Common Integrals

Polynomials

1
/dx:x—l—c /kdx:kﬂc—i-c /x"dx:x’”l—l—c,n;é—l
n+1

1 1
/dx:|n|x]+c /wldlen\x]—i—c /x"da:zx”“—i—c,n;él
T -n+1

1 1 P 1 P ptq
/ dx = —1Inlax + bl + ¢ /midx: gittpe=—2 25" 4o
ar + b a % +1 p+q
Trig Functions
/cos(u) du = sin(u) + ¢ /sin(u) du = —cos(u) + ¢ /3902 udu =tan(u) + ¢

/sec )tan(u) du = sec(u) + ¢ /csc(u) cot(u) du = —csc(u) + ¢ /csc2 udu = —cot(u) + ¢
/tan u = —In|cos(u)|+c=In|sec(u)|+c /cot( ) du = In|sin(u)|+c = —In|csc(u)|+c
1
/sec ) du=In|sec(u)+tan(u)|+c /sec?’(u) du = 2<sec( )tan(u)+|n]sec(u)+tan(u)]>+c

1
csc(u) du=In| csc(u)—cot(u)|+c /0303(u)du:2(—csc(u)cot(u)+ln\csc(u)—cot(u)\)Jrc
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Common Derivatives and Integrals

Exponential & Logarithm Functions

/e“du:e“+c /a“du:ma(a)—l—c /In(u)du:uln(u)—u+c
au o _ e f u _ u
/e sin(bu) du = pras <a sin(bu) — bcos(bu)) +c /ue du=(u—1)e"+¢

au eau H 1
/e cos(bu) du = a?+b2<a cos(bu) + bsm(bu)> +c /uln(u) du=In|In(u)| +c

Inverse Trig Functions

1 U
——du=sin"! (7) +c sin~!(u) du = usin™'(u) + V1 —u +¢
Va2 — y? a
o du = 1 tan~! (ﬂ) +c tan~!(u) du = utan™!(u) — L In (1+u?) +ec
a? + u? a a 2
/1 du = 1 sec™! (E> +c /Cos_l(u) du =ucos t(u) — V1—u2+c
uvu? — a? a a

Hyperbolic Functions
/sinh(u)du = cosh(u) + ¢ /sech(u) tanh(u)du = —sech(u) + ¢ /SeChQ(u)du = tanh(u) + ¢

/cosh(u)du = sinh(u) + ¢ /csch(u) coth(u)du = —csch(u) + ¢ /cschQ(u)du = —coth(u) + ¢

/tanh(u)du = In (cosh(u)) + ¢ /sech( )du = tan™" | sinh(u)| + ¢

Miscellaneous

1 1
o du=—1n
/aQ—u2 Y= %
1 1
———du=—1In
/uQ—a2 Y=o
/\/@2—u2du:u a2—u2—|—a—sm 1( )+c
2 2
u a? L f{a—u
vV 2au — u? du = 2au—u2+5008 — | +c
a

u—+a

/mdu— m+*|n\u+m)+c
/\/ —anu——\/ —aQ——In‘u—i—\/ —a2’+c

uU—a
u—+a

Standard Integration Techniques

b b g9(b)

u Substitution : / f(g(z)) ¢'(x) dz will convert the integral into / f(g(z)) ¢'(z)dx = / f(u)du
a a g(a)

using the substitution v = g(z) where du = ¢'(x)dx. For indefinite integrals drop the limits of

integration.
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Common Derivatives and Integrals

b

b b
Integration by Parts : /udv = uv — /vdu and / udv = uv —/ vdu. Choose u and dv from

a

integral and compute du by differentiating » and compute v using v = /dv.

Trig Substitutions : If the integral contains the following root use the given substitution and formula.

Va2 — 1222 = z="sin() and cos?(d)=1—sin%(9)

b
Vb2 —a? = x= %sec(e) and tan?(f) = sec?(d) — 1
Va2 + b2 = = %tan(ﬁ) and sec?(d) =1+ tan?()

P(x)
Q(x)

degree (largest exponent) of P(z) is smaller than the degree of Q(z) then factor the denominator
as completely as possible and find the partial fraction decomposition of the rational expression.
Integrate the partial fraction decomposition (P.F.D.). For each factor in the denominator we get
term(s) in the decomposition according to the following table.

Partial Fractions : If integrating a rational expression involving polynomials, dz, where the

Factor of Q(x) Termin P.F.D || Factoris Q(x) Termin P.F.D
A Ay Ay Ay,
b bk R A
art ax +b (az +0) ax+b+(a:c+b)2+ +(a:16—|—b)”‘C
Ax + B Al.%'—i-Bl AkiL'—i-Bk
24p 24 k s ...
arhrte ar? +br+c (az” +be + ) ax2+bx—|—c+ (ax? + bx + c)F

Products and (some) Quotients of Trig Functions :

For /sin"(x) cos" (z) dz we have the following :

1. n odd. Strip 1 sine out and convert rest to cosines using sin’(z) = 1 — cos?(z), then use the
substitution v = cos(z).
2. m odd. Strip 1 cosine out and convert rest to sines using cos?(x) = 1 — sin?(z), then use
the substitution u = sin(x).
. n and m both odd. Use either 1. or 2.
4. n and m both even. Use double angle and/or half angle formulas to reduce the integral into
a form that can be integrated.

w

For /tan"(x) sec” (z) dz we have the following :

1. n odd. Strip 1 tangent and 1 secant out and convert the rest to secants using
tan?(z) = sec?(z) — 1, then use the substitution u = sec(z).

2. m even. Strip 2 secants out and convert rest to tangents using sec?(z) = 1 + tan?(z), then
use the substitution u = tan(z).

3. n odd and m even. Use either 1. or 2.

4. n even and m odd. Each integral will be dealt with differently.

Convert Example : cos®(z) = (cosQ(x))?’ =(1- sinz(:c))3
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Table of Laplace Transforms

f(t)=L{F(s)}

F(s)=L{f )}

f(t)=L{F(s)}

F(s) = L{f (D)}

1.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

35.

37.

" on=1,2,3,...
Vi

sin(at)

tsin(at)

sin(at) — at cos(at)
cos(at) — at sin(at)
sin(at + b)

sinh(at)

e sin(bt)

e sinh(bt)

et n=1,23,...

uc(t) = u(t —c)

uc(t)f(t =)

! 2
s
n!
e 4.
il 6.
252
a
s? + a? 8
AQ 10.
(s? 4+ a?)
3
2 12.
(s + a?)
2 _ 2
sl =) 2) 14,
(s + a?)
ssin (b) + acos (b)
16.
s? + a?
a
g s
b o
(s —a)” +b?
b 22.
(s —a)” —b?
n!
24.
(S a)n+1
e 26.
s
e “F(s) 28.
F(s—c) 30.
/ F(u)du 32.
F(s)G(s) 34.
sF(s) — f(0) 36.
s"F(s) — s"1£(0) —

eat

tP, p>—1
=3 n=1,2,3,...
cos(at)

t cos(at)

sin(at) + at cos(at)
cos(at) + at sin(at)
cos(at + b)
cosh(at)

e cos(bt)

e cosh(bt)

flct)
d(t—c)

ue(t)g(t)

"ft), n=1,2,3,...

/Ot f(w)dv

fE+T)=f(1)

0

1
S—a
F'p+1)
3P+1

1-3-5---(2n—1) /7

ongnts

s
52 + a2
52 —a?

(s2 + a2)®

2as>

S (52 + 3a2)
(s2 + a2)?
scos (b) — asin (b)
s2 +a?

S
s2 — a2

()
C C
e ¢S

e_cs[,{g(t + c)}

(1" P ()

F(s)

T
/ e S f(t)dt
0

1—esT

s?F(s) — s£(0) — f'(0)

Sanf/(O) e — Sf(n72) (0) - f(nil) (0>
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Table of Laplace Transforms

Table Notes

1. This listis not a complete listing of Laplace transforms and only contains some of the more commonly
used Laplace transforms and formulas.

Recall the definition of hyperbolic functions.

t —1 t_ a—t
cosh () = % sinh (t) = %

2. Be careful when using “normal” trig function vs. hyperbolic functions. The only difference in the
formulas is the “+a?” for the “normal’” trig functions becomes a “—a?” for the hyperbolic functions!

3. Formula #4 uses the Gamma function which is defined as

') = / e "zt ldx
0

If n is a positive integer then,
'n+1)=n!

The Gamma function is an extension of the normal factorial function. Here are a couple of quick
facts for the Gamma function

L'(p+1)=pl(p)
plp+1)(+2)(p+tn—-1)=

()

['(p+n)
' (p)
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